
RetroGAN: Translating Unpaired Video Game Images Using CycleGANs

Andrew Rollings, Michael Townsend, Tyler Thurston
Georgia Institute of Technology

arollings3@gatech.edu, mtownsend31@gatech.edu, tthurston7@gatech.edu

Abstract

Video games from the retro era have a signature style due
to the 8-bit and 16-bit technology at the time. Limitations
on resolution, color, bandwidth, and processing power all
created constraints that limited the vision and scope of what
video game creators could implement. Using a CycleGAN
architecture to allow unpaired translation, we can learn from
screenshot data of two separate video game generations (8-
bit and 16-bit) and translate images from one generation to
the other. Our results show that we can take images from the
Nintendo Entertainment System (NES) and Super Nintendo
(SNES) and translate screenshots from both consoles into
the style of the other. Experiments demonstrate that the
CycleGAN architecture can learn many constraints of each
system in order to perform relatively accurate translations
between generations.

1. Introduction/Background/Motivation

In the 1980s, 8-bit consoles were king. These were char-
acterized by limited color palettes and relatively simple 2D
graphics. In the 1990s, 16-bit consoles took over and offered
increased power, color palettes and the ability to display
more complex graphics.
Despite huge advances in technology, retro-games from the
8- and 16-bit eras remain popular, as evidenced by the num-
ber of remakes, emulators, modern “Indie” games using pixel
art and even specialist magazines dedicating to retro gaming.
Our experiment is based on the observation that the primary
difference between 8- and 16-bit games (as exemplified by
the NES and SNES, respectively) was in the fidelity of the
graphics. Additionally, many of the graphical remasters to-
day view the 16-bit era as the gold standard in pixel-based
artwork, given that the graphical capabilities of the SNES
still allowed artists to express themselves far more than the
limited NES.
Our primary objective is to train two systems, one that can
take in an 8-bit NES graphic and “up-convert” it to a re-
alistic 16-bit version and another system that can take in
a 16-bit SNES graphic and “down-convert” it to a realistic
8-bit version.

Another area of interest is in software emulators that are
often used to breathe life into older games. For example,
the Nintendo Switch provides a paid emulation service that
allows players to access a library of older games. In some
cases, the emulators provide graphical filters that allow the
appearance of the game to be altered (e.g. a CRT filter, or
a resolution up-scaling filter). However, currently the only
way to improve the graphical color depth of a game is for
artists to redraw all of the game’s graphics.

If successful, this can allow the graphical content of a
particular video game console to be translated into the style
of another. Pixel artists are in very high demand and creating
high quality pixel art is one of the largest financial strains
that can be put on games, and is very time consuming/labor
intensive. Pixel artists are often so hard to find that studios
will save money by switching to 3D modeling as there are
more artists and tools to assist them. This could allow for
pixel artists to become more efficient, taking images from a
previous game or console generation and translating it to the
current project’s generation. For instance, if one wished to
modernize an 8-bit game, retroGAN enables someone to take
the images from the original game and create new baseline
screenshots for the sequel. Pixel artists would only need to
tweak the translation instead of starting from scratch. There
is also the interesting possibility of creating a real-time filter
that could do this conversion “on-the-fly” as the game is
being played. This conversion process is not constrained to
translation between NES and SNES, and could be done on
other consoles and generations given suitable datasets.

Datasets for NES/SNES images did not exist in a suit-
able form, so we created our own from various screenshot
databases on the internet. We implemented our own pre-
processing, which included unsupervised color clustering to
remove image artifacts, clamping colors to more closely ad-
here to the console’s original color palette, resizing and crop-
ping as appropriate, and other noise reduction techniques.
This provided us with a reasonably large set of images that
were organized into quality bands based on how much pre-
processing was required. This process is detailed in the
appendix to this paper.

1



2. Approach

We attempted to implement translation between video
game images from different generations. The primary prob-
lem was a lack of paired image data (an image from each
generation) since each console generation consists almost
solely of different games (with a small number of remakes).
We thought CycleGAN had the potential to be a solution
as it doesn’t require paired data due to the cyclic process
for training. That is, a NES image can be converted to a
SNES fake by one leg of the cycle, and then the SNES fake
can be converted back to a NES “fake fake” by the reverse
leg. Then the round-trip images (the NES original and its
doubly-converted “fake fake”) can be compared for differ-
ences. In an ideal system, the real image and the “fake fake”
image would be virtually identical. Both directions of the
conversion process (NES→SNES and SNES→NES) can be
cross-checked in this fashion.

We initially started by taking the driver code1 for the
original CycleGAN paper [2], implemented in Python with
PyTorch. We then removed all of the code not directly re-
lated to the CycleGAN model and added our own datasets,
pre-processing, augmentation, hyper-parameter tuning code,
and metrics. Our code can be viewed at https://github.com/
team-triforce/retroGAN.

Given the almost miraculous results in the literature that
have been achieved using CycleGANs with unpaired datasets
(and admittedly vast computing resources way beyond our
reach), we were reasonably confident that we could use simi-
lar techniques to perform a non-trivial conversion between
8-bit and 16-bit screenshots of games. We expected the
16→8-bit conversion to be much simpler than the 8→16-bit
conversion, but we were hopeful that we might be able to
achieve at least some worthwhile results in the latter case.

While the CycleGAN architecture has been used to solve
many problems, our dataset is unique and to our knowl-
edge, no other work has properly explored unpaired image-
to-image translation in this domain.

The main problem we expected was a lack of clean data.
While there are plenty of screenshots of games available
across the Internet, we could not find any pre-sorted collec-
tions of clean images. As such, we ended up writing several
custom web scrapers and image processing tools to collect
and homogenize screenshots from several game catalog web-
sites.

Additionally, we had concerns if CycleGAN would be
able capture the “pixel-perfect” constraints and requirements
for the conversion process. Previously, CycleGANs have
been typically used for experiments that have not required
such exact results; for example, the well-known Horse to
Zebra results were not conditioned on the exact shades of
white and black of the zebra stripes.

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix, Commit
Id 00d5574908eb66fe0127b32d7b030001453f21d0

Conversely, in our situation, there are several palette re-
strictions that apply to the NES and SNES consoles. While
the main difference between these consoles is their avail-
able color palettes, the NES also has several other graphical
restrictions that place some difficultly in quantifying restric-
tions on the number of colors in a particular areas of the
screen. The SNES also has similar restrictions, although
nowhere near as severe. This was anticipated to be very
difficult to generalize without magnitudes more data then
we had available to us (approximately 100,000 images of
varying quality between the two consoles). We didn’t see
great results in our first attempt, however after performing
the additional pre-processing, we started seeing interesting
results with convincing translations very early on.

2.1. NES / SNES Palette Considerations

The NES palette comprises 56 fixed colors2, whereas the
SNES is more flexible with a full 15-bit RGB palette (with 5
bits for each of the red, green and blue channels)3, as shown
in Figures 1a and 1b respectively.

As previously mentioned, there are some additional re-
strictions to how these colors can be used, but we do not cover
them here; they are of more concern to emulator writers, and
it was hoped that – given enough data – the CycleGAN would
be able to figure these out for itself.

As such, for an effective conversion, the GAN must learn
to conform to each palette. In the case of SNES→NES, this
could be as simple as a naive nearest color reduction from the
15-bit SNES palette to the fixed NES palette. Similarly, for
the NES→SNES conversion, the GAN could simply ensure
that the chosen colors fit the 15-bit RGB restriction. How-
ever, we hoped for (and observed) more complex behaviors
than this, implying that the GAN was able to somewhat suc-
cessfully extract more of the stylistic differences between
NES and SNES graphics. This will be discussed in later
sections.

(a) NES 56 Color Palette (b) SNES 15-bit Palette

Figure 1: Color palettes for NES and SNES

2.2. Generative Models and CycleGANs

For our main architecture, we chose CycleGAN for the
many positives it brings. First, being a Generative Model, it
brings us the ability to generate new models via sampling
from our implicit density estimation. On top of that, we

2https://en.wikipedia.org/wiki/List of video game console palettes
3https://en.wikipedia.org/wiki/List of monochrome and RGB color formats

2

https://github.com/team-triforce/retroGAN
https://github.com/team-triforce/retroGAN


also were drawn by the advantages of specifically Genera-
tive Adversarial Networks(GANs)[1]. GANs provide several
benefits over other generative models, including not need-
ing labeled data as GANs are unsupervised. They are also
flexible on the types of data they ingest. Most importantly,
since they sample from their density instead of doing any
kind of averaging, GANs result in the sharpest images over
other generative models. This is a very important property
as retro graphics involve small, sharp pixel placement which
makes this a vital quality for this dataset.

Finally, we chose CycleGAN[2], as it provides the abil-
ity to translate between two datasets without the need for
paired images. Instead of the usual GAN architecture of a
single generator and discriminator, the CycleGAN architec-
ture uses mappings: G and F with the goal of having G
learn a mapping from domain X → Y such that G(X) is
indistinguishable from the distribution Y using adversarial
loss. However, due to the low constraints of unpaired data, a
second, inverse mapping F : Y → X is created to induce a
cycle consistency loss to push F (G(X)) ≈ X , as shown:

G : X → Y, F : Y → X : F (G(X)) ≈ X

These mappings are combined with two cycle consistency
losses that can capture the intuition that translating from one
domain to another and back again should result to something
similar to the original input.

Additionally, an identity loss is used to provide color/hue
stability. This is defined as F (X) ≈ X and G(Y ) ≈ Y .
The identity loss is combined with the cycle consistency loss
proportionally as determined by a bias hyperparameter.

Figure 2: CycleGAN Architecture

3. Experiments and Results
The CycleGAN framework allowed for significant config-

urability of hyperparameters, and we took full advantage of
the flexibility provided. As such, for our first pass success
measure, we selected for the hyperparameters that showed
the smallest amount of loss for at least one direction of the
cycle. This gave us a shortlist of candidates to examine that
we evaluated manually to determine which to investigate
further. One interesting (but not entirely unexpected) ob-
servation we found was that the cycle performance was not
even; a set of hyperparameters that performed well for the
NES→SNES conversion would not necessarily perform well
for the SNES→NES conversion, and vice versa.

For each promising candidate set, we then ran a cus-
tomized metric to evaluate the final images for their ad-
herence to the hardware restrictions of each console. We

produced several iterations of this metric, before finally set-
tling on Algorithm 1. This was applied as a post-training
evaluation metric and was not a learned parameter.

This metric scores an image based on how closely the
pixels match the target console palette modulated by the
percentage of image pixels that match the target palette ex-
actly. This modulation was necessary to compensate for
the fact that the SNES palette has many more entries, and
consequently, it was easier for the algorithm to score highly
as any selected color was never too far away from a valid
palette entry in RGB space. A perfect metric of either sys-
tem would require accounting for hundreds of variables(pixel
limit, per-pixel color palette limits, transparency limitations,
max sprites per screen, etc), however this would be a task
outside the scope of this paper and would heavily depend
on domain knowledge, so we chose a metric that focuses
on color palette, as it’s a much more tractable task and is a
metric that could be adapted to consoles other than just the
NES/SNES.

In practice, we found that using the stricter NES met-
ric produced more meaningful results; that is, for the
SNES→NES conversion, we found that measuring the in-
crease in value for this metric between the real SNES and
fake NES image was a strong indicator of success. Con-
versely, for the NES→SNES conversion, the decrease in
value of this metric was a good (although looser) indicator
of success.

Using the hyperparameter search driver, each of the three
authors ran a random hyperparameter search using the time
available; once this was complete we first compared our
results by the metric described above, selecting a shortlist of
best candidates. We considered each direction of the cycle
separately for the reasons mentioned previously. For each
candidate, we performed a visual inspection of the output
and reached a consensus on which of these had generated
the best overall results. The final candidate from each cycle
direction was then used to generate the images and graphs in
the following sections.

3.1. SNES→NES Results

As expected, the SNES→NES conversion proved to be
the most effective cycle leg. For a training group size of 2500
images from the best quality band, the averaged NES metric
was 0.9848, indicating that across all of the training images,
roughly 98% of the pixels conformed to the NES palette.

We selected several of the most aesthetically pleasing con-
version images, and re-ran the NES metric on both the real
and fake images, as shown in table 1. These results show
that, while there was definite improvement, and hence learn-
ing, the network was unable to score the same metric as the
training set. For a dataset size of 2500 (with a 90/10 train/test
split), the averaged SNES metric was 0.6382, indicating that
across all of the training images, roughly 64% of the pixels
conformed to the NES palette. The specific dataset size was

3



chosen due to training time constraints, and the resulting
training graph is shown in figure 3.

Source SNES Image Real Fake
ActRaiser 0.0449 0.5190
Super Ghouls ’n Ghosts 0.0171 0.3330

Table 1: SNES→NES Results (NES Metric)

These results were generated using the hyperparameters
shown in table 2. Note that only hyperparameters different
than the defaults specified in the CycleGAN code are shown.

Hyperparameter Value
Batch size 4
GAN Mode lsgan
netG unet 128
Pre-process pixel double and crop
Epochs 50
Decay Epochs 10

Table 2: SNES→NES Hyperparameters

Figure 3: Training Graph with best SNES→NES results

The generator network used a U-Net 128 architecture
internally, and the discriminator network used the default
basic architecture. Figure 4 shows the general structure of a
U-Net architecture4. The generator had 41.829× 106 train-
able parameters and the discriminator had 2.766× 106. The
“least squares” loss function was used by the discriminator
(as determined by the lsgan hyperparameter choice for GAN
Mode.

4Adapted from https://github.com/matthias-wright/cifar10-resnet

Figure 4: Example U-NET Architecture

(a) Real SNES Screenshot (b) Fake NES screenshot

Figure 5: ActRaiser: SNES→NES

(a) Real SNES Screenshot (b) Fake NES screenshot

Figure 6: Super Ghouls ’n Ghosts: SNES→NES

Despite the lower metric score, a visual examination of
the results in figures 5a and 5b show that the fake image
is clearly closer to the target aesthetic, and the conversion
process appears to be more involved than a simple palette
conversion. In particular, figure 6b seems to show that differ-
ent conversion criteria have been applied to different areas
of the image. If one compares the lower left brighter green
area in figure 6a with the similar intensity green area just
right of center, it appears that the lower left area is rendered
brighter in 6b than the right of center area, even though the
same areas in the source image are of similar intensity.

Overall these results are promising, although they are far
from perfect. Since we are using an imperfect metric, the fact
that we chose our final network based on the performance
of that metric is inducing some level of bias towards color.
As we stated before, to truly represent a NES game requires
accounting for many additional constraints beyond color.
However, since this is not a tractable metric we can create
and our metric is centered only on color, it’s reasonable that
the network is prone to overfitting color at the cost of other
features not reliant on color palette.

4

https://github.com/matthias-wright/cifar10-resnet


There is evidence that the network is learning beyond
color though, as 5a shows that the NES conversion removed
the foggy backdrop of the original image. This is very im-
portant, as drawing a foggy background in this example was
mostly likely done using transparency on the SNES, which
is something that the NES can’t replicate as it didn’t have
enough spare memory to allow for it. This is evidence that
the model was able to account beyond replicating the color
palette and started understanding from NES data that effects
like transparency aren’t possible.

3.2. NES→SNES Results

For the NES→SNES conversion we performed an almost
identical analysis. We selected several of the most aestheti-
cally pleasing conversion images, and re-ran the stricter NES
metric on both the real and fake images, as shown in table 3.

Source NES Image Real Fake
Crisis Force 1.0 0.0155
Ninja Kid 1.0 0.0157

Table 3: NES→SNES Results (NES Metric)

These results were generated using the hyperparameters
shown in table 4. Note that only hyperparameters different
than the defaults specified in the CycleGAN code are shown,
and the resulting training graph is shown in figure 7.

Hyperparameter Value
Batch size 4
GAN Mode lsgan
netG resnet 9
Pre-process pixel double and crop

Table 4: NES→SNES Hyperparameters

Figure 7: Training Graph with best NES→SNES results.

The generator network used a 9-block ResNet architecture
internally, and the discriminator network used the default
basic architecture. Figure 8 shows the general structure of a
ResNet architecture5. The generator had 11.383× 106 train-
able parameters and the discriminator had 2.766× 106. The
“least squares” loss function was used by the discriminator

5Adapted from https://github.com/matthias-wright/cifar10-resnet

(as determined by the lsgan hyperparameter selection for
GAN Mode.

Figure 8: Example ResNet Architecture

(a) Real NES Screenshot (b) Fake SNES screenshot

Figure 9: Crisis Force: NES→SNES

(a) Real NES Screenshot (b) Fake SNES screenshot

Figure 10: Ninja Kid: NES→SNES

Although it is apparent that this leg of the conversion was
not as successful as the reverse leg, it is still interesting that
the results show that some selective conversion has taken
place. Notably, figures 9 and 10 show that background areas
tended to be lightened and blurred, bright spots tended to be
blown out and made brighter, while areas of darker colors –
particular those with black pixel outlines – tended to be left
relatively untouched, implying that the network did at least
extract some relevant feature information.

For two reasons we concluded that we underfit the model.
First, the fake training images continued to improve as the
training went on. At no point did the generated image’s
quality plateau. Second, we used smaller training sizes due
to time constraints. Given more time we may have been able
to use our entire dataset and fully train the model.

4. Conclusion And Future Work
Our results show that despite the complications, some

promising results emerged from our experiments. As ex-
pected, the results for the SNES→NES conversion were bet-
ter than the NES→SNES due to the comparative simplicity

5

https://github.com/matthias-wright/cifar10-resnet


of a down-conversion (where information loss isn’t necessar-
ily a problem) versus up-conversion, where information has
to be synthesized from learned experience.

In essence, the former conversion is almost trivially easy
for the CycleGAN compared to the latter.

With further experimentation and architecture tweaks, we
believe that we would have been more successful with the
NES→SNES conversion.

Examples of possible future work could include video-
based training, using pixel-perfect screen captures from con-
sole emulation software. The use of video would hopefully
help the CycleGAN perform stable modifications as the game
progressed. If successful, this could be used to perform real-
time up-conversion of games played in an emulator.

Additional follow-up work could include improvements
to the scoring metrics to take into account the additional
hardware restrictions, as well as the incorporation of the
metrics into the respective loss functions.

Future work could also focus on expanding the consoles
that the framework supports. For example, mapping from
16-bit to 32-bit or even mapping larger jumps from 16-bit
to 64-bit. There would be added complexity to this, which
may result in needing larger training sets or alternate loss
functions.

Alternate loss functions in particular are an interesting
area for further research. The CycleGAN architecture was
built for the general problem on mapping images from one
domain to another. However, for the specific problem of
mapping images from one console generation to another,
loss functions could be more precise. Others could research
using the loss function to additionally model the console’s
graphical constraints, learning the exact color palette of each
console generation.

In the short term, given more time, we would have liked to
have explored the possibility of enforcing some of the palette
constraints (particularly for the SNES→NES conversion) by
modifying the output layer of the GAN so that, for example,
each pixel in the output image was represented by a one-hot
encoded palette entry. This would have resulted in an output
layer of size 56 × 256 × 256 ≈ 3.67 × 106 parameters,
and would have ensured palette adherence, but may well
have been significantly harder to train. This implementation
would not have been feasible for the SNES, because it would
have required approximately 2.147× 109 parameters in the
output layer.

Another area that we were unable to investigate due to
time constraints was the idea of sequentially training the
network with successive datasets; starting from a small and
clean set and increasing in noise and size. This has been
shown in the literature to help improve learning and general-
ization in some cases.

5. Appendixes

5.1. Dataset Preparation

Due to the lack of any readily available datasets for
SNES and NES image, we had to create our own. This
task was made more difficult due to the number of sources
that do not have clean images (for example, badly scaled,
artifact-laden and/or watermarked images). Ultimately, a
web scraper was written that allowed us to extract screen-
shots from four separate websites: https://mobygames.com,
https://www.video-games-museum.com, https://superfamicom.org and
https://archive.org.

Each of these sites had a wide variety of images that
required varying degrees of preprocessing. As such, the pro-
gram performed cropping and rescaling as necessary, taking
care to preserve pixel detail as much as possible. Next, any
images for each console that had more colors than allowed
were run through an auto-clustering algorithm to reduce the
number of colors below the allowable threshold for that con-
sole. Finally, each image was then classified into one of three
“quality bands” depending on the amount of pre-processing
required and the fidelity of the final image. The best quality
band was reserved for images that required no pre-processing
or none other than cropping. The next quality band contained
images that required only cropping, color-correction and/or
scaling by a factor of exactly 2×, and the final quality band
contained images that required scaling of 2.5× after crop-
ping. Any images that did not fit into these three categories
were discarded.

After processing, the best quality band contained roughly
20, 000 images per console, with an overall total of 50, 000+
images per console across all three bands. Note that for the
experiments in this paper, we used 2500 from the best quality
band due to training time constraints.

5.2. Dataset Loading

In order to make effective use of the dataset, we had to
write a custom PyTorch loader in order to take advantage of
the quality bands. This was integrated into the CycleGAN
loader to allow seamless handling of the images within the
constraints of the existing code.

Additionally, this allowed us to implement additional on-
the-fly image processing, and custom transforms such as
pixel-doubling and color-clamping. Color clamping was
used to ensure that an input image used the correct console
palette by forcing the pixels of the image to conform the
closest color in the appropriate console palette. Pixel dou-
bling was a special case of the inbuilt zoom augmentation of
CycleGAN that used nearest-neighbor scaling by a factor of
2× rather than the default bicubic, non-integer scaling. This
was necessary to preserve the pixel and color integrity of the
original image.

6

https://mobygames.com
https://www.video-games-museum.com
https://superfamicom.org
https://archive.org


console palette← target console color palette normalized RGB values
max rgb← corners of RGB space for (i, j, k) ∈ i = {0, 1}, j = {0, 1}, k = {0, 1}
m bias← 1/number of colors in target console color palette
total score← 0
num images←number of candidate images

for each candidate image do
img rgb← per pixel normalized RGB values
min dists← min distances between img rgb and console palette
max dists← min distances between img rgb and max rgb values.
match pct←

∑
i=1..n[1 if (min distsi < 1) else 0]/n

bias factor ← max(0,min(1,m bias+ (1−m bias)×match pct)
img score← (

∑
i=1..n(max dists)−

∑
i=1..n(min dists))/

∑
i=1..n(max dists)

total score← total score+ img score× bias factor
end for
return total score/num images

Algorithm 1: Metric for evaluating conversion quality

References
[1] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks, 2014. 3

[2] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. CoRR, abs/1703.10593, 2017. 2, 3

7


